Vote for BP.Net for the 2013 Forum of the Year! Click here for more info.

» Site Navigation

» Home
 > FAQ

» Online Users: 1,628

1 members and 1,627 guests
Most users ever online was 9,191, 03-09-2025 at 12:17 PM.

» Today's Birthdays

None

» Stats

Members: 75,868
Threads: 249,064
Posts: 2,571,954
Top Poster: JLC (31,651)
Welcome to our newest member, elizard
Results 1 to 6 of 6

Thread: snake vision

  1. #1
    Registered User J.Coils's Avatar
    Join Date
    03-15-2011
    Location
    Richmond Virginia
    Posts
    82
    Thanks
    29
    Thanked 7 Times in 7 Posts
    Images: 4

    snake vision

    does anyone know exactly how snakes see? color? crisp images? black n white?
    heat vision(like the movie "predator")
    i ask because my bp seems to "stare" at me sometimes and i was wondering how well she could see me or what the world looks like to them

  2. #2
    Anti-Thread Necro Patrol
    Join Date
    05-10-2007
    Location
    Columbus, Georgia, United States
    Posts
    4,561
    Thanks
    334
    Thanked 1,230 Times in 739 Posts
    Blog Entries
    1
    Images: 51

    Re: snake vision

    Quote Originally Posted by J.Coils View Post
    does anyone know exactly how snakes see? color? crisp images? black n white?
    heat vision(like the movie "predator")
    i ask because my bp seems to "stare" at me sometimes and i was wondering how well she could see me or what the world looks like to them
    No one truely knows. But bps do have heat pits so they can see your heat signature. We just don't know how it looks to them.

  3. The Following User Says Thank You to MasonC2K For This Useful Post:

    J.Coils (06-23-2011)

  4. #3
    BPnet Veteran Alexandra V's Avatar
    Join Date
    06-24-2010
    Location
    Montreal, QC, Canada
    Posts
    2,573
    Thanks
    1,198
    Thanked 736 Times in 603 Posts
    As was said, nobody truly knows. I'm sure that diurnal snakes see sharper images than nocturnal snakes because they can actually make more use out of their vision than nocturnal snakes, but as far as the rest of the vision nobody really knows.

    Here's something interesting though, since you brought up the heat vision: I've read somewhere that the heat pits are actually connected to the optical lobe of the brain, so they essentially do have heat vision.
    1.0 Normal - Maynard
    1.0 POG - Victor
    0.1 YB - Diana

    0.1 Pastel Boa - Astrid
    1.0 Salmon Boa -

    1.1 Leopard Geckos

    0.3.2 Inverts

  5. The Following User Says Thank You to Alexandra V For This Useful Post:

    J.Coils (06-24-2011)

  6. #4
    BPnet Veteran mommanessy247's Avatar
    Join Date
    04-06-2010
    Location
    sc
    Posts
    1,842
    Thanks
    0
    Thanked 206 Times in 189 Posts
    Images: 13

    Re: snake vision

    i like to think they see like this...


    my current collection
    1.2 kiddos
    1.0 better half
    0.1 mojave ball python (Nyx)
    0.1 Dumerils Boa (Hemera)
    1.0 Eastern Box turtle
    3.4.? rats (? = litter coming any day now)
    0.1 dutch rabbit (Lucy)

    my "future hopefuls"
    0.0.1 pied cockatiel 0.0.1 white bellied caique 0.0.2 guinea pigs

  7. The Following 2 Users Say Thank You to mommanessy247 For This Useful Post:

    angllady2 (06-23-2011),J.Coils (06-23-2011)

  8. #5
    BPnet Senior Member iCandiBallPythons's Avatar
    Join Date
    01-07-2009
    Location
    North Carolina
    Posts
    3,549
    Thanks
    508
    Thanked 1,043 Times in 829 Posts
    The ability to sense infrared thermal radiation evolved independently in several different families of snakes. Essentially, it allows these animals to “see” radiant heat at wavelengths between 5 and 30 μm to a degree of accuracy such that a blind rattlesnake can target vulnerable body parts of the prey at which it strikes. It was previously thought that the organs evolved primarily as prey detectors, but recent evidence suggests that it may be used in thermoregulation and predator detection, making it a more general-purpose sensory organ than was supposed.



    Phylogeny and evolution
    The facial pit underwent parallel evolution in pitvipers and some boas and pythons. It evolved once in pitvipers and multiple times in boas and pythons. The electrophysiology of the structure is similar between the two lineages, but they differ in gross structural anatomy. Most superficially, pitvipers possess one large pit organ on either side of the head, between the eye and the nostril (loreal pits), while boas and pythons have three or more comparatively smaller pits lining the upper and sometimes the lower lip, in or between the scales (labial pits). Those of the pitvipers are the more advanced, having a suspended sensory membrane as opposed to a simple pit structure.

    In vipers, the pit organ is seen only in the subfamily Crotalinae: the pitvipers. The organ is used extensively by them to detect and target warm-blooded prey such as rodents and birds, and it was previously assumed that the organ evolved specifically for that purpose. However, recent evidence shows that the pit organ may also be used for thermoregulation. In an experiment that tested snakes' abilities to locate a cool thermal refuge in an uncomfortably hot maze, all pitvipers were able to locate the refuge quickly and easily, while true vipers were unable to do so. This suggests that the pitvipers were using their pit organs to aid in thermoregulatory decisions.[2] It is also possible that the organ may even have evolved as a defensive adaptation rather than a predatory one, or that multiple pressures may have potentially contributed to the organ's development. The use of the heat pit to direct thermoregulation in pythons and boas has not yet been determined. Viperine snakes (which lack pit organs) also use thermal cues to guide strike behavior, but not to guide thermoregulation.

    Anatomy
    In pitvipers, the heat pit consists of a deep pocket in the rostrum with a membrane stretched across it. Behind the membrane, an air-filled chamber provides air contact on either side of the membrane. The pit membrane is highly vascular and heavily innervated with numerous heat-sensitive receptors formed from terminal masses of the trigeminal nerve (terminal nerve masses, or TNMs). The receptors are therefore not discrete cells, but a part of the trigeminal nerve itself. The labial pit found in boas and pythons lacks the suspended membrane and consists more simply of a pit lined with a membrane that is similarly innervated and vascular, though the morphology of the vasculature differs between these snakes and crotalines. The purpose of the vasculature, in addition to providing oxygen to the receptor terminals, is to rapidly cool the receptors to their thermo-neutral state after being heated by thermal radiation from a stimulus. Were it not for this vasculature, the receptor would remain in a warm state after being exposed to a warm stimulus, and would present the animal with afterimages even after the stimulus was removed.


    Diagram of the Crotaline pit organ.[edit] Neuroanatomy
    In all cases, the facial pit is innervated by the trigeminal nerve. In crotalines, information from the pit organ is relayed to the nucleus reticularus caloris in the medulla via the lateral descending trigeminal tract. From there, it is relayed to the contralateral optic tectum. In boas and pythons, information from the labial pit is sent directly to the contralateral optic tectum via the lateral descending trigeminal tract, bypassing the nucleus reticularus caloris.

    It is the optic tectum of the brain which eventually processes these infrared cues. This portion of the brain receives other sensory information as well, most notably optic stimulation, but also motor, proprioceptive and auditory. Some neurons in the tectum respond to visual or infrared stimulation alone; others respond more strongly to combined visual and infrared stimulation, and still others respond only to a combination of visual and infrared. Some neurons appear to be tuned to detect movement in one direction. It has been found that the snake’s visual and infrared maps of the world are overlaid in the optic tectum. This combined information is relayed via the tectum to the forebrain.

    The nerve fibers in the pit organ are constantly firing at a very low rate. Objects that are within a neutral temperature range do not change the rate of firing; the neutral range is determined by the average thermal radiation of all objects in the receptive field of the organ. The thermal radiation from warm objects causes an increase in the temperature of the nerve fiber, resulting in stimulation of the nerve and subsequent increase in firing rate. Thermal radiation from colder objects cools the nerve, causing an inhibition and firing rate depression.[9] The sensitivity of the nerve fibers is estimated to be >0.001 °C.

    The pit organ will adapt to a repeated stimulus; if an adapted stimulus is removed, there will be a fluctuation in the opposite direction. For example, if a warm object is placed in front of the snake, the organ will increase in firing rate at first, but after a while will adapt to the warm object and the firing rate of the nerves in the pit organ will return to normal. If that warm object is then removed, the pit organ will now register the space that it used to occupy as being colder, and as such the firing rate will be depressed until it adapts to the removal of the object. The latency period of adaptation is approximately 50-150 msec.

    The facial pit actually visualizes thermal radiation using the same optical principals as a pinhole camera, wherein the location of a source of thermal radiation is determined by the location of the radiation on the membrane of the heat pit. However, studies that have visualized the thermal images seen by the facial pit using computer analysis have suggested that the resolution is actually extremely poor. The size of the opening of the pit results in poor resolution of small, warm objects, and coupled with the pit's small size and subsequent poor heat conduction, the image produced is of extremely low resolution and contrast. It is known that some focusing and sharpening of the image occurs in the lateral descending trigeminal tract, and it is possible that the visual and infrared integration that occurs in the tectum may also be used to help sharpen in the image. In addition, snakes may deliberately choose ambush sites with low thermal background radiation (colder areas) to maximize the contrast of their warm prey in order to achieve such a high degree of accuracy from their thermal “vision”.
    CREDITS: Wikipedia
    Malcolm S.
    Premier Ball Python Mutations

    Like Us on Face Book or Visit our website

  9. The Following 2 Users Say Thank You to iCandiBallPythons For This Useful Post:

    J.Coils (06-24-2011),TangieHaze (07-11-2016)

  10. #6
    Registered User J.Coils's Avatar
    Join Date
    03-15-2011
    Location
    Richmond Virginia
    Posts
    82
    Thanks
    29
    Thanked 7 Times in 7 Posts
    Images: 4

    Re: snake vision

    Quote Originally Posted by mommanessy247 View Post
    i like to think they see like this...

    yeah that's what i always figured too

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Powered by vBadvanced CMPS v4.2.1